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Introduction

1. Introduction

Observers can voluntarily attend to a location in the visual field,
and subsequent stimuli at that location will be recognized more
accurately and rapidly (Posner, 1980). Furthermore, visual per-
ception can be improved through specific training, a phenomenon
called Visual Perceptual Learning (VPL) (Gibson, 1963). VPL is one
of the strongest examples of plasticity in the adult brain and a core
feature of visual cognition. VPL might depend on attention
(Ahissar and Hochstein, 1993) and allows for more efficient re-
sponses to environmental stimuli.

Despite several decades of investigations, neuronal mechan-
isms of VPL remain debated (Gilbert et al., 2001; Sasaki et al., 2010;
Shibata et al., 2014). Neurophysiologic and neuroimaging studies
indicated that VPL induces changes of neural activity in visual
cortex (Crist et al., 2001; Schoups et al, 2001; Schwartz et al.,
2002; Furmanski et al., 2004) and in higher-order brain regions
(Chowdhury and DeAngelis, 2008; Law and Gold, 2009) involved
in the control of spatial attention (Sigman et al., 2005; Lewis et al.,
2009), as well as in their interaction (Liu et al., 2010; Lewis et al,,
2009).
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Introduction

It has been suggested that VPL shifts the critical locus of pro-
cessing for learned stimuli from higher-order control regions, early
on during training, to visual cortex after learning is completed. For
example, in human observers, intensive training on a shape or-
ientation identification task causes a shift in the pattern of acti-
vation, measured with blood oxygenation level dependent (BOLD)
signals in functional magnetic resonance imaging (fMRI), between
frontal-parietal regions (so-called dorsal attention network, DAN)
and occipital visual regions (Sigman et al., 2005; Lewis et al.,
2009). Specifically, in our study (Lewis et al., 2009), frontal and
parietal regions (e.g. posterior intra-parietal sulcus, pIPS) known
to be involved in the control of visuospatial attention were more
strongly active for novel (untrained) stimuli, and attenuated their
response for familiar (trained) stimuli. In contrast, occipital visual
regions responded more strongly to trained than untrained sti-
muli. Moreover, learning-induced modulation of visual cortex ac-
tivity was topographically selective. In fact, since the task required
observers to discriminate stimuli at a peripheral location in the left
lower quadrant, corresponding activity modulation was recorded
in right dorsal visual cortex. In particular, higher activation was
observed in both right V2d/V3 and lateral occipital region (LO;
Lewis et al., 2009). Finally, response modulations were behavio-
rally relevant: subjects with higher sensitivity to trained shapes
showed stronger modulation in the trained quadrant of visual
cortex. Overall these findings support the hypothesis that whereas
higher-order frontal and parietal regions are more important early

on in training presumably for directing visuospatial attention and
selecting unfamiliar stimuli, attention control becomes less im-

portant later on as ‘templates’ of learned shapes are consolidated
in visual cortex.
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maggiormente attivato per la forma
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Introduction

It has been suggested that VPL shifts the critical locus of pro-
cessing for learned stimuli from higher-order control regions, early
on during training, to visual cortex after learning is completed. For
example, in human observers, intensive training on a shape or-
ientation identification task causes a shift in the pattern of acti-
vation, measured with blood oxygenation level dependent (BOLD)
signals in functional magnetic resonance imaging (fMRI), between
frontal-parietal regions (so-called dorsal attention network, DAN)
and occipital visual regions (Sigman et al., 2005; Lewis et al.,
2009). Specifically, in our study (Lewis et al., 2009), frontal and
parietal regions (e.g. posterior intra-parietal sulcus, pIPS) known
to be involved in the control of visuospatial attention were more
strongly active for novel (untrained) stimuli, and attenuated their
response for familiar (trained) stimuli. In contrast, occipital visual
regions responded more strongly to trained than untrained sti-
muli. Moreover, learning-induced modulation of visual cortex ac-
tivity was topographically selective. In fact, since the task required
observers to discriminate stimuli at a peripheral location in the left
lower quadrant, corresponding activity modulation was recorded
in right dorsal visual cortex. In particular, higher activation was
observed in both right V2d/V3 and lateral occipital region (LO;
Lewis et al., 2009). Finally, response modulations were behavio-
rally relevant: subjects with higher sensitivity to trained shapes
showed stronger modulation in the trained quadrant of visual
cortex. Overall these findings support the hypothesis that whereas
higher-order frontal and parietal regions are more important early

on in training presumably for directing visuospatial attention and
selecting unfamiliar stimuli, attention control becomes less im-

portant later on as ‘templates’ of learned shapes are consolidated
in visual cortex.
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e Considerati nel complesso, questi
risultati supportano l'ipotesi che,
mentre le regioni attentive/
controllo fronto-parietali sono piu’
importanti nella fase iniziale del
training, il controllo attentive
diviene meno importante nella
fase finale del training quando si
formano del ‘templati’ in corteccia
visiva.



Introduction

on in training presumably for directing visuospatial attention and
selecting unfamiliar stimuli, attention control becomes less im-
portant later on as ‘templates’ of learned shapes are consolidated
in visual cortex.

While the above studies have provided invaluable information
on the neural mechanisms of VPL, there is actually scarce direct
evidence that the learning specific visual regions (i.e. V2d/V3 and
LO) are actually mediating perceptual learning. Here we used re-
petitive TMS (rTMS) in healthy volunteers to test with a causal
approach hypotheses that are based on our fMRI findings (i.e.
correlative), and specifically the crucial role of visual cortices in
shape identification task. Using the same visual paradigm of our
mentioned studies (Lewis et al., 2009; Baldassarre et al., 2012),
after the intensive training, rTMS was employed to interfere with
the activity in right V2d/V3, LO, or pIPS. If VPL is completed and
the template of learned shape is formed in the corresponding (i.e.
right) visual regions, then we predict that the inactivation of
parietal cortex (i.e. pIPS) will not affect the behavioral perfor-
mance. On the contrary, we expect impairment in detecting fa-
miliar shapes after inactivation of both visual cortices (i.e. V2d/V3
and LO). Furthermore, since our previous neuroimaging experi-
ments showed a similar learning-related fMRI modulation for V2d/
V3 and LO, we predict a similar impairment in such visual regions.
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on in training presumably for directing visuospatial attention and
selecting unfamiliar stimuli, attention control becomes less im-
portant later on as ‘templates’ of learned shapes are consolidated
in visual cortex.

While the above studies have provided invaluable information
on the neural mechanisms of VPL, there is actually scarce direct
evidence that the learning specific visual regions (i.e. V2d/V3 and
LO) are actually mediating perceptual learning. Here we used re-
petitive TMS (rTMS) in healthy volunteers to test with a causal
approach hypotheses that are based on our fMRI findings (ie.
correlative), and specifically the crucial role of visual cortices in
shape identification task. Using the same visual paradigm of our
mentioned studies (Lewis et al., 2009; Baldassarre et al, 2012),
after the intensive training, rTMS was employed to interfere with
the activity in right V2d/V3, LO, or plIPS. If VPL is completed and
the template of learned shape is formed in the corresponding (i.e.
right) visual regions, then we predict that the inactivation of
parietal cortex (i.e. pIPS) will not affect the behavioral perfor-
mance. On the contrary, we expect impairment in detecting fa-
miliar shapes after inactivation of both visual cortices (i.e. V2d/V3
and LO). Furthermore, since our previous neuroimaging experi-
ments showed a similar learning-related fMRI modulation for V2d/
V3 and LO, we predict a similar impairment in such visual regions.

2. Materials and methods
2.1 Subjects and stimuli

16 right-handed volunteers (age range: 20-30 yrs. old; 8 fe-
males) participated in this experiment. A preliminary self-reported
questionnaire assessed that they did not present previous psy-
chiatric or neurological history. Participants gave written consent
according to the Institutional Review Board and Ethics Committee
of the University of Chieti. The computer monitor was placed in
front of them at a distance of about 60 cm.

Subjects were trained with daily sessions to attend to the lower
left visual quadrant and find the target shape among the dis-
tracters while maintaining central fixation. The stimulus array
comprised 12 Ts arranged in an annulus of low eccentricity (i.e. 5°
radius) and was displayed across the 4 visual quadrants. Of note,
with such low eccentricity in our previous study (Lewis et al,
2009) we did not observed significant eye movements. On each
trial subjects fixated a central spot for 200 ms (fixation), after
which the target shape (an inverted T) was presented at the center
of the screen for 2000 ms (target presentation); finally, an array of

12 stimuli, differently oriented Ts (distracters) with or without an
inverted T (target), was briefly flashed for 150 ms (array pre-
sentation). The target shape appeared randomly in 1 of 3 locations
in the left lower (trained) visual quadrant, and never in the three
untrained-quadrants. The target shape appeared randomly in 1 of
3 locations in the left lower (trained) visual quadrant, and never in
the other three untrained quadrants. Subjects attended to the
lower left visual quadrant and indicated the presence or absence
of the target shape visual quadrant by pressing a left/right mouse
button with their right hand (Fig. 1a). Each block consisted of 45
trials, 36 (80%) that contained the target and S (20%) that did not.
Training lasted one week, and an average of 100 practice blocks
were necessary to reach a threshold of 80% accuracy in at least 12
consecutive blocks of trials (see Fig. 1b for a representative psy-
chophysical curve). Of note, the accuracy of each block was
weighted with the rate of false positive (Sigman and Gilbert, 2000;
Sigman et al., 2005; Lewis et al., 2009).

When subjects reached criterion, they were asked to perform
three blocks of the same task during each TMS condition (i.e. V2d/
V3, LO, plIPS, and Sham). Presentation timing was triggered by the
TMS train (see below), and the four TMS conditions were run in a
counterbalanced order across subjects, who were instructed to
respond as accurately and quickly as possible. Reaction times and
the accuracy of the response were recorded for behavioral ana-
lyzes. Notably, none of the subjects reported discomfort or pain
during each stimulation site.

2.2 Procedures for rTMS and identification of rarget scalp regiens

TMS stimulation was delivered through a focal, figure eight coil,
connected with a standard Mag-Stim Rapid 2 stimulator (max-
imum output 2.2 T). Individual resting excitability threshold for
right motor cortex stimulation was preliminarily determined fol-
lowing standardized procedure (Rossini et al, 1994). The rTMS
train (iL.e. 3 pulses) was delivered simultaneously to the central
spot ~2 s before the stimuli array with the following parameters:
150 ms duration, 20-Hz frequency, and intensity set at 100% of the
individual motor threshold. The parameters are consistent with
published safety guidelines for TMS stimulation (Rossi et al,
2009). Of note, previous studies have shown that such stimulation
has effect for at least 2 s, thus affecting target processing (Capo-
tosto et al., 2009, 2012a, 2012b).

All participants performed three active rTMS (ie. V2d/V3, LO,
and pIPS) and one inactive TMS (i.e. Sham) conditions corre-
sponding to each stimulation site, applied in different blocks and
counterbalanced across subjects. In the “Sham® condition, a pseudo
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on in training presumably for directing visuospatial attention and
selecting unfamiliar stimuli, attention control becomes less im-
portant later on as ‘templates’ of learned shapes are consolidated
in visual cortex.

While the above studies have provided invaluable information
on the neural mechanisms of VPL, there is actually scarce direct
evidence that the learning specific visual regions (i.e. V2d/V3 and
LO) are actually mediating perceptual learning. Here we used re-
petitive TMS (rTMS) in healthy volunteers to test with a causal
approach hypotheses that are based on our fMRI findings (ie.
correlative), and specifically the crucial role of visual cortices in
shape identification task. Using the same visual paradigm of our
mentioned studies (Lewis et al., 2009; Baldassarre et al, 2012),
after the intensive training, rTMS was employed to interfere with
the activity in right V2d/V3, LO, or plIPS. If VPL is completed and
the template of learned shape is formed in the corresponding (i.e.
right) visual regions, then we predict that the inactivation of
parietal cortex (i.e. pIPS) will not affect the behavioral perfor-
mance. On the contrary, we expect impairment in detecting fa-
miliar shapes after inactivation of both visual cortices (i.e. V2d/V3
and LO). Furthermore, since our previous neuroimaging experi-
ments showed a similar learning-related fMRI modulation for V2d/
V3 and LO, we predict a similar impairment in such visual regions.

2. Materials and methods

2.1 Subjects and stimuli

Sigman et al., 2005; Lewis et al., 2009).

16 right-handed volunteers (age range: 20-30 yrs. old; 8 fe-
males) participated in this experiment. A preliminary self-reported
questionnaire assessed that they did not present previous psy-
chiatric or neurological history. Participants gave written consent
according to the Institutional Review Board and Ethics Committee
of the University of Chieti. The computer monitor was placed in
front of them at a distance of about 60 cm.

Subjects were trained with daily sessions to attend to the lower
left visual quadrant and find the target shape among the dis-
tracters while maintaining central fixation. The stimulus array
comprised 12 Ts arranged in an annulus of low eccentricity (i.e. 5°
radius) and was displayed across the 4 visual quadrants. Of note,
with such low eccentricity in our previous study (Lewis et al,
2009) we did not observed significant eye movements. On each
trial subjects fixated a central spot for 200 ms (fixation), after
which the target shape (an inverted T) was presented at the center
of the screen for 2000 ms (target presentation); finally, an array of

12 stimuli, differently oriented Ts (distracters) with or without a
inverted T (target), was briefly flashed for 150 ms (array pre
sentation). The target shape appeared randomly in 1 of 3 location
in the left lower (trained) visual quadrant, and never in the thre
untrained-quadrants. The target shape appeared randomly in 1 o
3 locations in the left lower (trained) visual quadrant, and never i
the other three untrained quadrants. Subjects attended to th
lower left visual quadrant and indicated the presence or absenc
of the target shape visual quadrant by pressing a left/right mous
button with their right hand (Fig. 1a). Each block consisted of 4
trials, 36 (80%) that contained the target and 9 (20%) that did no
Training lasted one week, and an average of 100 practice bloc

were necessary to reach a threshold of 80% accuracy in at least 1
consecutive blocks of trials (see Fig. 1b for a representative psy
chophysical curve). Of note, the accuracy of each block wa
weighted with the rate of false positive (Sigman and Gilbert, 2000

When subjects reached criterion, they were asked to perform
three blocks of the same task during each TMS condition (i.e. V2d/
V3, LO, plIPS, and Sham). Presentation timing was triggered by the
TMS train (see below), and the four TMS conditions were run in a
counterbalanced order across subjects, who were instructed to
respond as accurately and quickly as possible. Reaction times and
the accuracy of the response were recorded for behavioral ana-
lyzes. Notably, none of the subjects reported discomfort or pain
during each stimulation site.

2.2 Procedures for rTMS and identification of rarget scalp regiens

TMS stimulation was delivered through a focal, figure eight coil,
connected with a standard Mag-Stim Rapid 2 stimulator (max-
imum output 2.2 T). Individual resting excitability threshold for
right motor cortex stimulation was preliminarily determined fol-
lowing standardized procedure (Rossini et al, 1994). The rTMS
train (iL.e. 3 pulses) was delivered simultaneously to the central
spot ~2 s before the stimuli array with the following parameters:
150 ms duration, 20-Hz frequency, and intensity set at 100% of the
individual motor threshold. The parameters are consistent with
published safety guidelines for TMS stimulation (Rossi et al,
2009). Of note, previous studies have shown that such stimulation
has effect for at least 2 s, thus affecting target processing (Capo-
tosto et al., 2009, 2012a, 2012b).

All participants performed three active rTMS (ie. V2d/V3, LO,
and pIPS) and one inactive TMS (i.e. Sham) conditions corre-
sponding to each stimulation site, applied in different blocks and
counterbalanced across subjects. In the “Sham® condition, a pseudo
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on in training presumably for directing visuospatial attention and
selecting unfamiliar stimuli, attention control becomes less im-
portant later on as ‘templates’ of learned shapes are consolidated
in visual cortex.

While the above studies have provided invaluable information
on the neural mechanisms of VPL, there is actually scarce direct
evidence that the learning specific visual regions (i.e. V2d/V3 and
LO) are actually mediating perceptual learning. Here we used re-
petitive TMS (rTMS) in healthy volunteers to test with a causal
approach hypotheses that are based on our fMRI findings (ie.
correlative), and specifically the crucial role of visual cortices in
shape identification task. Using the same visual paradigm of our
mentioned studies (Lewis et al., 2009; Baldassarre et al, 2012),
after the intensive training, rTMS was employed to interfere with
the activity in right V2d/V3, LO, or plIPS. If VPL is completed and
the template of learned shape is formed in the corresponding (i.e.
right) visual regions, then we predict that the inactivation of
parietal cortex (i.e. pIPS) will not affect the behavioral perfor-
mance. On the contrary, we expect impairment in detecting fa-
miliar shapes after inactivation of both visual cortices (i.e. V2d/V3
and LO). Furthermore, since our previous neuroimaging experi-
ments showed a similar learning-related fMRI modulation for V2d/
V3 and LO, we predict a similar impairment in such visual regions.

2. Materials and methods
2.1 Subjects and stimuli

16 right-handed volunteers (age range: 20-30 yrs. old; 8 fe-
males) participated in this experiment. A preliminary self-reported
questionnaire assessed that they did not present previous psy-
chiatric or neurological history. Participants gave written consent
according to the Institutional Review Board and Ethics Committee
of the University of Chieti. The computer monitor was placed in
front of them at a distance of about 60 cm.

Subjects were trained with daily sessions to attend to the lower
left visual quadrant and find the target shape among the dis-
tracters while maintaining central fixation. The stimulus array
comprised 12 Ts arranged in an annulus of low eccentricity (i.e. 5°
radius) and was displayed across the 4 visual quadrants. Of note,
with such low eccentricity in our previous study (Lewis et al,
2009) we did not observed significant eye movements. On each
trial subjects fixated a central spot for 200 ms (fixation), after
which the target shape (an inverted T) was presented at the center
of the screen for 2000 ms (target presentation); finally, an array of

12 stimuli, differently oriented Ts (distracters) with or without an
inverted T (target), was briefly flashed for 150 ms (array pre-
sentation). The target shape appeared randomly in 1 of 3 locations
in the left lower (trained) visual quadrant, and never in the three
untrained-quadrants. The target shape appeared randomly in 1 of
3 locations in the left lower (trained) visual quadrant, and never in
the other three untrained quadrants. Subjects attended to the
lower left visual quadrant and indicated the presence or absence
of the target shape visual quadrant by pressing a left/right mouse
button with their right hand (Fig. 1a). Each block consisted of 45
trials, 36 (80%) that contained the target and S (20%) that did not.
Training lasted one week, and an average of 100 practice blocks
were necessary to reach a threshold of 80% accuracy in at least 12
consecutive blocks of trials (see Fig. 1b for a representative psy-
chophysical curve). Of note, the accuracy of each block was
weighted with the rate of false positive (Sigman and Gilbert, 2000;

Sigman et al, 2005 Lewis et al._2009),

When subjects reached criterion, they were asked to perform
three blocks of the same task during each TMS condition (i.e. V2d/
V3, LO, plIPS, and Sham). Presentation timing was triggered by the
TMS train (see below), and the four TMS conditions were run in a
counterbalanced order across subjects, who were instructed to
respond as accurately and quickly as possible. Reaction times and
the accuracy of the response were recorded for behavioral ana-
lyzes. Notably, none of the subjects reported discomfort or pain

during each stimulation site.

2.2 Procedures for rTMS and identification of rarget scalp regiens

TMS stimulation was delivered through a focal, figure eight coil,
connected with a standard Mag-Stim Rapid 2 stimulator (max-
imum output 2.2 T). Individual resting excitability threshold for
right motor cortex stimulation was preliminarily determined fol-
lowing standardized procedure (Rossini et al, 1994). The rTMS
train (iL.e. 3 pulses) was delivered simultaneously to the central
spot ~2 s before the stimuli array with the following parameters:
150 ms duration, 20-Hz frequency, and intensity set at 100% of the
individual motor threshold. The parameters are consistent with
published safety guidelines for TMS stimulation (Rossi et al,
2009). Of note, previous studies have shown that such stimulation
has effect for at least 2 s, thus affecting target processing (Capo-
tosto et al., 2009, 2012a, 2012b).

All participants performed three active rTMS (ie. V2d/V3, LO,
and pIPS) and one inactive TMS (i.e. Sham) conditions corre-
sponding to each stimulation site, applied in different blocks and
counterbalanced across subjects. In the “Sham® condition, a pseudo
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When subjects reached criterion, they were asked to perform

three blocks of the same task during each TMS condition (i.e. V2d/
V3, LO, pIPS, and Sham). Presentation timing was triggered by the

TMS train (see below), and the four TMS conditions were run in a
counterbalanced order across subjects, who were instructed to
respond as accurately and quickly as possible. Reaction times and

the accuracy of the response were recorded for behavioral ana-
lyzes. Notably, none of the subjects reported discomfort or pain

during each stimulation site.
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La TMS e’ stat applicata in maniera attivia su 3 siti:
V2d/3, LO e IPS piu’ una stimolazione ‘finta’ (Sham)
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3. Results

3.1 Main analyzes 700

The results clearly indicated a slowing of response time (RT) .
during V2d/V3 and LO stimulation as compared to Sham and pIPS .
stimulation (Fig. 2a and Fig. 2b). This was confirmed by an ANOVA 650
on RTs that showed a main effect of Condition (Fs45=7.23 c A oas
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(560 ms + 57 SD; p < 0.05). Importantly, no difference were ob-
served between RTs after the two visual regions (i.e. V2d/V3 and
LO; p=0.71) and between RTs after the active (pIPS) and inactive
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the behavioral data were normally distributed (Lilliefors
test > 0.15). Finally, the same statistical design using Accuracy did
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not provide any statistically significant difference across condi- 200
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stimulation (measured as RTs [V2d/V3-Sham]) was positively
correlated across subjects to the impairment produced by LO sti-
mulation (RTs[LO-Sham]) (r=0.78; p < 0.001) (Fig. 2c). Conversely, 400
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3. Results

3.1 Main analyzes

The results clearly indicated a slowing of response time (RT)
during V2d/V3 and LO stimulation as compared to Sham and pIPS
stimulation (Fig. 2a and Fig. 2b). This was confirmed by an ANOVA
on RTs that showed a main effect of Condition (Fs45=7.23 ' '
p < 0.0005; flpartia®=0.32; statistical power=0.97) with slower
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as compared to pIPS (548 ms +52 SD; p<0.001) and Sham
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served between RTs after the two visual regions (i.e. V2d/V3 and
LO; p=0.71) and between RTs after the active (pIPS) and inactive
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correlated across subjects to the impairment produced by LO sti-
mulation (RTs[LO-Sham]) (r=0.78; p < 0.001) (Fig. 2c). Conversely,
the effect of rTMS over pIPS was not correlated neither with the
interference over V2d/V3 (p=0.35) nor with LO (p=0.25).
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3. Results

3.1 Main analyzes

The results clearly indicated a slowing of response time (RT)
during V2d/V3 and LO stimulation as compared to Sham and pIPS
stimulation (Fig. 2a and Fig. 2b). This was confirmed by an ANOVA
on RTs that showed a main effect of Condition (Fs45=7.23
p < 0.0005; flpartia®=0.32; statistical power=0.97) with slower
RTs after both V2d/V3 (580 ms + 58 SD) and LO (577 ms + 62 SD)
as compared to pIPS (548 ms +52 SD; p<0.001) and Sham
(560 ms + 57 SD; p < 0.05). Importantly, no difference were ob-
served between RTs after the two visual regions (i.e. V2d/V3 and
LO; p=0.71) and between RTs after the active (pIPS) and inactive
(Sham) control conditions (p=0.12). Of note, in all TMS conditions
the behavioral data were normally distributed (Lilliefors
test > 0.15). Finally, the same statistical design using Accuracy did

not provide any statistically significant difference across condi-
tions. In Table 1 are reported the % of accuracy and the number of
false positives (fp) for all TMS conditions with the relative statis-
tical p values (p > 0.1).

Interestingly, the behavioral impairment produced by V2d/V3
stimulation (measured as RTs [V2d/V3-Sham]) was positively
correlated across subjects to the impairment produced by LO sti-
mulation (RTs[LO-Sham]) (r=0.78; p < 0.001) (Fig. 2c). Conversely,
the effect of rTMS over pIPS was not correlated neither with the
interference over V2d/V3 (p=0.35) nor with LO (p=0.25).

o
S 8

LO minus Sham RTs (ms)
o

r=0.78; p<0.001

-20 0 20 40 60 80
V2d/V3 minus Sham RTs (ms)

100



Results

3. Results

3.1 Main analyzes

The results clearly indicated a slowing of response time (RT)
during V2d/V3 and LO stimulation as compared to Sham and pIPS
stimulation (Fig. 2a and Fig. 2b). This was confirmed by an ANOVA
on RTs that showed a main effect of Condition (Fs45=7.23
p < 0.0005; flpartia®=0.32; statistical power=0.97) with slower
RTs after both V2d/V3 (580 ms + 58 SD) and LO (577 ms + 62 SD)
as compared to pIPS (548 ms +52 SD; p<0.001) and Sham
(560 ms + 57 SD; p < 0.05). Importantly, no difference were ob-
served between RTs after the two visual regions (i.e. V2d/V3 and
LO; p=0.71) and between RTs after the active (pIPS) and inactive
(Sham) control conditions (p=0.12). Of note, in all TMS conditions
the behavioral data were normally distributed (Lilliefors
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