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People differ in their ability to perform novel perceptual tasks, both
during initial exposure and in the rate of improvement with prac-
tice. It is also known that regions of the brain recruited by particular
tasks change their activity during learning. Here we investigate
neural signals predictive of individual variability in performance.
We used resting-state functional MRI to assess functional connec-
tivity before training on a novel visual discrimination task. Sub-
sequent task performance was related to functional connectivity
measures within portions of visual cortex and between visual cor-
tex and prefrontal association areas. Our results indicate that
individual differences in performing novel perceptual tasks can be
related to individual differences in spontaneous cortical activity.

predisposition | visual learning | spontaneous activity

Healthy observers differ in their ability to perform a variety of
visual tasks (1). Individuals also differ in their ability to

improve with training (2–6), i.e., perceptual learning (7, 8). Ini-
tial performance and rate of learning tend to be inversely related
(3, 9). Thus, individuals who perform better initially tend to
exhibit slower improvement. Although the physiological corre-
lates of perceptual learning have been well documented at the
level of individual synapses (10), neurons (11, 12), and large-
scale networks (6, 13–16), it is largely unknown whether the state
of the brain before training influences future performance or the
rate of acquisition of a novel task. Here we investigate the extent
to which performance of a novel perceptual task can be pre-
dicted on the basis of physiological measures evaluated before
training. Our measure of performance takes into account both
early and late features of the psychophysical learning curve.
Intrinsic neural activity is temporally correlated within widely

distributed networks that recapitulate the topography of task-re-
lated functional responses (17–21). Hence, resting-state func-
tional connectivity offers a plausible neural correlate of behavioral
predisposition to perform a novel task. Moreover, resting-state
measures have been correlated with individual performance var-
iability in several cognitive domains (22–26). However, to our
knowledge, no study to date has shown that functional connec-
tivity, measured before training, within cortical circuits later
recruited by a novel task, is predictive of future performance.
In previous work (15), we showed that resting-state blood

oxygenation level-dependent signal functional connectivity (FC)
changes in task-relevant cortical networks after extensive prac-
tice on a novel orientation discrimination task. Critically, post-
learning modulations in FC correlated with individual measures
of improvement.
Here, we analyze the same dataset to test the hypothesis that

FC in task-relevant circuits, measured before training, is pre-
dictive of subsequent performance.

Results
Behavior.Healthy observers (n = 14, seven male) were trained to
report the presence/absence of a target shape (an inverted letter

T) (14) always presented in the lower left visual quadrant (15)
(Fig. 1A, Methods, and SI Methods). Targets and distractors
(letter Ts of different orientation) were presented together in
a circular array at 5° of eccentricity. The criterion for successful
acquisition of the task was a normalized accuracy equal to or
greater than 80% over 10 consecutive blocks of trials, with each
block including 45 trials (14, 15, 27):

Normalized accuracy ¼ ðhits ½%� þ correct rejections ½%�Þ
− false alarms ½%�=1− false alarms ½%�Þ

[1]

On average, observers took approximately 5,600 trials or 118
blocks (∼4 d of 2–3 h practice per day) to reach the criterion
(Fig. 1B). We observed a high degree of individual variability at
the beginning of training. Accuracy on the first 10 blocks, the
minimum number of blocks performed on the first day, was 41%
with large interindividual variability (range, 13–69%). Psycho-
physical performance curves were fit by using the following
empirical two-parameter expression:

a ¼ a0 þ slogðkÞ [2]

where a is accuracy, k indexes block, a0 is initial accuracy on the
first block, and s is a scaling parameter numerically equal to the
initial slope. Fits of the analytic expression to the individual
performance data were expressed in terms of variance explained
(r2): median r2 was 0.68, with a range of 0.29 to 0.93 (Fig. 1B and
Fig. S1). In addition to a0 and s, we evaluated the number blocks
needed to achieve the criterion (performance ≥80%; kc). The
three measures were correlated (SI Methods and Fig. S2) in
a manner consistent with previous studies of perceptual learning
(3, 9). Thus, subjects with high initial accuracy learned the task in
fewer blocks but at a lower rate of improvement. Conversely,
subjects with lower initial accuracy took longer to reach criterion
but their rate of improvement was higher. Because of these
relations and the relatively small size of the study group, it was not
possible to derive independent measures of initial performance
and rate of learning. To obtain individual quantitative indices of
performance, a0, s, and kc were entered into a principal compo-
nent analysis (Fig. S3). The first component (PC1) explained 75%
of the variance. The second component accounted for 15% of the
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variance, but its eigenvalue was less than 1 (scree plot in Fig. S3)
and it was therefore not further considered (28). Accordingly,
PC1 was used to compute individual measures of performance,
which we here define as task fitness (f) by using the following
expression:

f ¼ ½a0 s kc� ·w [3]

where w is the vector of factor weights (SI Methods). In the rest
of the analysis, we use task fitness to examine the relationship
between performance and pretraining resting-state FC.

Pretraining FC in Visual Cortex and Task Fitness. Resting-state
functional MRI (fMRI) and visuotopic localizer fMRI were ac-
quired 24 to 48 h before first exposure to the task (Methods and
SI Methods). During the visuotopic localizer scans, subjects were
asked to maintain central fixation while quarter-field stimulus
arrays were passively presented in a blocked design (Fig. 1C).
Regions of interest (ROIs) for the computation of FC were
identified in the ventral and dorsal portions of visual cortex in
each hemisphere. At the group level, two ROIs were identified
in each quadrant as showing the strongest visuotopic localizer
responses (e.g., in right dorsal cortex for left lower field stimu-
lation) compared with the average response to stimuli in the
other quadrants [group-level voxel-wise random-effect ANOVAs,
multiple comparison corrected over the entire brain (P < 0.05)].
These regions are shown in Fig. 1D on a flattened representation
of visual cortex in the Population Average Landmark and Surface
(PALS) atlas (29) and labeled according to their location with
respect to the probabilistic borders of visual areas in the same
atlas (Table S1). In general, for each quarter-field representation
in visual cortex, one ROI is “early” in the visual hierarchy (near/
at V1–V2), whereas the other is “intermediate” (near/at V4–V8
or V3A; Fig. 1D; Table S1 shows coordinates).
To examine the relationship between pretraining FC and the

ability to perform the discrimination task, we computed group-
level voxel-wise maps of the Pearson correlation coefficient be-
tween task fitness and the strength of FC for each visuotopic

ROI (defined as FC–PC1 correlation maps; Methods, SI Meth-
ods, and Fig. S4). Fig. 2A shows that the strength of FC between
a representative ROI in right ventral visual cortex (near/at V1–
V2) and large swaths of ventral and dorsal peripheral visual
cortex in both hemispheres is strongly correlated with task fitness
(all voxels Z > 2; P < 0.05, Monte Carlo corrected). Observers
with stronger pretraining FC between visual regions displayed
greater task fitness (Fig. 2B). This relationship was consistent
across different ROIs in left and right visual cortex (Fig. S5). To
quantify this consistency, a conjunction map was computed that
shows the portions of visual cortex with behaviorally predictive
FC across multiple ROIs (Fig. 2C). The most consistent regions
encompassed both early and intermediate retinotopic areas, in-
cluding a band outside the foveal region in the near periphery
(based on the PALS borders).
To examine whether the regions exhibiting behaviorally signifi-

cant pretraining FC coded for the stimuli, we quantified the per-
centage of voxels in the FC–PC1 conjunction map that overlapped
with the regions in visual cortex selectively activated by the stim-
ulus array (i.e., the sum of the quadrant maps). At a threshold of
four of eight ROIs, 72% of the behaviorally predictive voxels from
the FC–PC1 conjunction map fell within the borders of the region
activated by the stimulus (Fig. 2D). This proportion increased to
86% when the threshold was increased to five of eight ROIs.
Computing pairwise correlations for all ROIs and calculating

the correlation with task fitness confirmed these findings. The
range of FC–PC1 correlations varied between an r of 0.1 and an r
of 0.8; 13 of 28 (or 8 * 7/2) possible ROI pairs showed a significant
correlation with task fitness [false discovery rate (FDR), q < 0.05
after random permutation test]. Thus, voxel-wise and regional
analyses confirmed a significant relationship between task fitness
and pretraining FC in portions of visual cortex activated by the
visuotopic localizer stimuli. Fig. 3A shows the group average
strength of FC between ROI pairs arranged by visual quadrant
(i.e., dorsal, ventral). Fig. 3B shows behaviorally significant FC.
Behaviorally predictive correlations (FC–PC1) were observed
predominantly in heterotopic region pairs, i.e., region pairs in
different quadrants within the same (e.g., left dorsal to ventral

Fig. 1. Behavioral training, psychophys-
ics results, visuotopic localizer, and ROIs.
(A) Experimental paradigm. (B) x axis,
number of blocks; y axis, accuracy (i.e.,
percentage of correct response corrected
for percentage of false alarms). Black
dots display the group average perfor-
mance block by block; solid red line
indicates the psychophysical fitting
model a = a0 + slog(k) with prediction
bounds at 95% of confidence level (dot-
ted lines). (C) Design of visuotopic local-
izer. Squares of different colors (not
shown in real display) indicate a visual
quadrant. (D) Visual ROIs/seeds. Eight vi-
sual regions (seeds) defined on the basis
of the visuotopic localizer scan are dis-
played on the flattened representation
of posterior occipital cortex using the
PALS atlas (29). Blue lines are approxi-
mate borders between retinotopic visual
areas based on a standard atlas (29) L.H.,
left hemisphere; R.H., right hemisphere.
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cortex) or different hemispheres (e.g., left dorsal to right ventral
cortex; Fig. 3 B and C), rather than homotopic region pairs (e.g.,
right dorsal to left dorsal cortex; Fig. 3B andD) or local connectivity
(e.g., right dorsal V1–V3 to right dorsal V3A–LO; permutation test
on the entire correlation matrix, FDR q < 0.05; Fig. 3 B and E).

Pretraining FC Between Visual and Frontoparietal Regions and Task
Fitness. Behaviorally predictive FC with visuotopic areas ex-
tended also to a small number of regions in higher-order frontal
and posterior parietal cortex (Fig. S6A). Fig. 4A shows FC
between a right dorsal visual ROI and left anterior insula, be-
longing to the “control network” (30, 31), which was negatively
correlated with task fitness. Observers who performed better on
the orientation discrimination task tended to have stronger
negative correlation (i.e., antiphase coherence) between spon-
taneous activity in visual cortex and anterior insula (Fig. 4B). This
result is representative of multiple visual ROIs (four of eight visual
ROIs; Fig. 4C). Interestingly, this region overlaps with an insular
region activated by the orientation discrimination task (Fig. 4D
and SI Methods). A similar pattern was detected in the right
medial prefrontal cortex, a part of the default mode network (32,
33) (Fig. 4 E–H). Again, more negative FC corresponded to
greater task fitness (Fig. 4F). This region overlaps with a larger
medial prefrontal region deactivated by task performance (Fig.
4H and SI Methods). Similar negative FC–PC1 correlations, i.e.,
more negative FC corresponding to better performance, were
detected in other default mode regions, in left middle temporal
cortex and right/left angular gyrus (Fig. S6A and Table S2). All
regions in higher-order cortex that showed predictive FC with
visual cortex overlapped regions recruited by the orientation
discrimination task (Fig. S6 B and C), albeit in a small proportion
of the total extent of cortex recruited by the task.

Control Analyses: Auditory Cortex. To examine the modality spec-
ificity of these effects, and rule out the possibility that FC–per-
formance correlations merely reflected a high level of FC in
neighboring areas, a set of control analyses was run on primary
and secondary auditory regions (SI Methods; Table S1 shows
coordinates). The auditory regions were selected based on two
criteria: anatomical location and task deactivation during the

orientation discrimination task. In fact, primary and secondary
auditory regions are typically deactivated during visual tasks (32).
From the auditory regions, we computed baseline FC and FC–
PC1 correlation maps, which were compared with the visual
regions. Both neighboring visual (Fig. S7A) and auditory regions
(Fig. S7C) showed strong FC. However, auditory regions (Fig.
S7D), in contrast to visual regions (Fig. S7B), did not show
a predictive relationship with task fitness. We conclude that the
behaviorally predictive pretraining FC is modality specific, and is
not driven by local connectivity.

Discussion
We show that certain patterns of resting state FC within visual
cortex, and between visual cortex and higher-order cortical
regions, represent neural predictors of observer predisposition to
perform a novel orientation discrimination task. Several previous
studies have reported correlations between performance meas-
ures and fMRI FC (22–26). However, this study, as far as we are
aware, is the first to demonstrate that FC, before any exposure, is
predictive of performance and acquisition on a novel task. In
addition, its topography coincides with the areas subsequently
recruited by task performance.

Task Fitness: Initial Performance, Rate, and Duration of Learning. The
behavioral component identified by the factor analysis (i.e., PC1)
combined aspects of initial performance (i.e., predisposition), the
rate of performance improvement, and the quantity of practice
required to reach criterion. Our observers were highly variable in
their initial performance, a finding concordant with previous
studies of complex visual tasks (1) as well as perceptual learning
(2–4, 6). Interestingly, task fitness was positively correlated with
initial performance, and negatively correlated with the rate of
learning and the number of blocks to criterion. Hence, subjects
with high initial performance reached criterion earlier but at
a slower rate, consistent with early reports on perceptual learning
(3, 9). Our results therefore suggest that the state of the system at
the beginning of training may influence the way the observers
learn when the task requires extensive cortical processing.

Fig. 2. Task fitness and pretraining FC to/from visual cortex.
(A) Voxel-wise FC–PC1 correlation map starting from a seed
region in the right ventral visual seed (V1–V2; black border),
corresponding to the left upper visual quadrant. The map is
projected onto a flattened representation of the posterior
occipital cortex using the PALS atlas (29). Color scale: yellow/
orange indicates positive correlation (Z-statistic of Pearson r)
thresholded at Z > 2, P < 0.05, and Monte Carlo corrected. Blue
color indicates negative correlation. Blue lines are the same as
in Fig. 1D. L.H., left hemisphere; R.H., right hemisphere. (B) x
axis, task fitness, i.e., principal component scores of PC1; y axis,
FC (Fisher Z-transformed) between a right ventral visual seed
V1–V2 (green, Inset; same as in A) and a left dorsal visual re-
gion (red) extracted from the FC–PC1 correlation map in A
(Talairach coordinates, −06 −96 +08; 185 voxels). Each di-
amond represents an observer. (C) Conjunction of eight voxel-
wise FC–PC1 correlation maps, one for each visual seed shown
in Fig. 1D (Table S1 provides coordinates). Color scale: yellow/
orange indicates overlap of positive correlations (range, 1–8);
cyan/blue indicates overlap of negative correlations. (D) Con-
junction map between visuotopic localizer activations (Z sta-
tistic > 3, P < 0.05, Monte Carlo corrected; Methods; red) and
FC-PC1 conjunction map thresholded four of eight (green).
Overlapped voxels are in yellow.
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Predictive Intrinsic FC. Predictive FC was observed in region pairs
including visual cortex as well as prefrontal and insular areas in-
volved in cognitive control. All predictive regions were a subset of
the cortical regions driven by the orientation discrimination task.
Two patterns of FC were predictive of task fitness. In visual cortex,
observers with stronger heterotopic functional connections, i.e.,
linking cortex representing dorsal and ventral quadrants within or
between hemispheres, exhibited higher task fitness. In contrast, the
strength of homotopic connections, i.e., linking dorsal or ventral
quadrants across hemispheres, or of local connections, i.e., linking
adjacent regions in visual cortex, was not predictive of perfor-
mance. This result is noteworthy because local and homotopic FC
typically is stronger than heterotopic FC (34, 35).
A possible interpretation is that heterotopic connections

linking different quadrants in visual cortex are more important
for the dynamic reweighting of functional connections that occur
in the course of learning. The orientation discrimination task
required subjects to direct spatial attention to the left lower
quadrant. Important processes for acquisition of the task include
filtering of distracters at multiple unattended locations (36), as
well as coding of the locus of attention by gradients of activity
across spatial maps (37, 38). Hence, a high degree of coherence
between stimulus-specific regions in visual cortex, before any
experience, may facilitate the subsequent parsing of relevant
from irrelevant information, and facilitate the reweighting of
functional connections among different quadrants in visual

cortex. At the end of learning, in agreement with this hypothesis,
stronger responses to target shapes were recorded only in the
trained visual quadrant, and FC was differentially modulated in
trained and untrained quadrants (15).
The second predictive pattern of FC was an inverse correlation

between spontaneous activity in visual cortex and regions of the
default mode (32, 33) and control (30) networks. This finding is
also consistent with learning-related changes reported in our
previous study (15), and in the work of Sigman et al. (14). We
previously found that FC between unattended quadrants in visual
cortex and default mode regions decreased (i.e., became less
negative) after learning, and that these decrements correlated
with measures of perceptual learning. Sigman et al. reported that
decreases in task-evoked deactivation in the default mode net-
work correlated with learning on the same task (14). Observers
with stronger negative correlation between visual cortex and de-
fault mode regions at baseline may find it easier to filter out dis-
tracters at unattended locations early in training, which becomes
less important as target selection becomes more automatic. This
interpretation is consistent with a role of the default mode net-
work in filtering out unattended stimuli, as suggested by other
studies (39–41). Behaviorally significant negative correlations in
FC between visual cortex and default mode regions have also been
reported in relation to reading skills in children and adults,
a competency closely related to orientation discrimination (25).

Fig. 3. Task fitness and pretraining FC within visual cortex. (A) Correlation matrix (Fisher Z-transformed Pearson coefficient) of all ROI pairs in visual cortex.
Yellow/orange color indicates positive correlations, white color indicates nonsignificant correlations (permutation test on the entire correlation matrix; FDR
q < 0.05). Dorsal visual regions are highlighted by light pink, ventral visual regions by light purple. (B) Correlation matrix (Pearson coefficient r) of PC1 and FC
between all possible ROI pairs in visual cortex. Red/yellow cells indicate positive FC–PC1 correlations, white cells indicate nonsignificant correlations (per-
mutation test on the entire correlation matrix; FDR q < 0.05). (C–E) x axis, task fitness, i.e., principal component scores of PC1; y axis, FC (Fisher Z-transformed)
between two heterotopic (C), homotopic (D), and neighboring (E) visual regions. Each diamond represents an observer. For Pearson correlation coefficient,
permutation test was performed on the entire correlation matrix (FDR q < 0.05).
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Putative Underlying Mechanisms. One possible substrate for the
predictive relationship between task fitness and FC is individual
variability in structural connectivity. The strength of structural
connections has been correlated with the strength of FC at the
level of both large-scale networks (42) and local microcircuitry
(43), and has also been shown to exhibit experience-dependent
plasticity (44). However, in our study, regions exhibiting pre-
dictive FC (i.e., heterotopic connections in visual cortex, and
visual, default, and control) showed weaker baseline FC. The
logical inference would be that these areas are less well anatom-
ically connected (42). Moreover, in primate studies, subdivisions
of visual cortex with behaviorally predictive (i.e., heterotopic)
functional coupling tend to have weaker anatomical connectivity
than nonpredictive (i.e., homotopic) regions (45).
Another mechanism that could be related to our results is the

recent observation that fMRI FC is related to slow cortical
potentials and band-limited fluctuations of power in higher fre-
quencies (46–48). These relatively slow fluctuations in neural ex-
citability may facilitate synchronization of high-frequency activity
through a variety of mechanisms (49, 50), and enable the coordi-
nation of task-relevant circuits. This could explain why observers
with stronger FC within visual cortex, or between visual and other
task-relevant areas in prefrontal and insular cortex, can recruit
those regions more efficiently when performing a novel task.
We conclude that individual variability of FC within visual

cortex, and between visual and higher-order regions, is related to
the predisposition to perform a novel visual discrimination task.

These findings suggest a potential role of intrinsic brain activity
as a neural predictor of perceptual skill acquisition. This result
has general implications for the functional significance of spon-
taneous activity, and the neural bases of individual behavioral
variability. In addition, our findings emphasize the importance of
spontaneous activity, and the state of FC, as a possible “neural”
prior for biasing task-evoked activity and behavior (51–53).

Methods
Participants.Healthy right-handedobservers (N=14) providedwritten informed
consent approved by the Research Ethics Board of the University of Chieti.

Behavioral Training.Observerswere instructed to attend to the left lower visual
quadrant and report with a key press the presence/absence of a target shape
(an inverted letter T) in a briefly presented radial display of randomly oriented
letter-T distracters. Central fixation was monitored with an eye tracker. Cri-
terion for learning was 10 blocks of trials with accuracy of at least 80%.

fMRI Scanning. Functional images (gradient-echo sequence, repetition time of
2.163 s, echo time of 50 ms, flip angle 90°, slice thickness of 8 mm, 3.75 × 3.75
mm in-plane resolution) were acquired during passive stimulation of each
visual quadrant with the same display used for perceptual learning (i.e.,
localizer). Localizer scans were used to define ROIs/seeds for the FC analysis
of resting-state data obtained before any exposure to the task.

Behavioral Score. Task fitness was defined as the first factor (i.e., PC1) of a
principal component analysis on the parameters of a natural logarithmic
function, plus the number of blocks to criterion, used to quantify observer
learning curves. This component accounted for 75% of the behavioral

Fig. 4. Task fitness and pretraining FC to/from visual cortex and frontal regions. (A) Lateral view of the voxel-wise FC–PC1 correlationmap starting from a right
dorsal visual seed (V3A–LO), corresponding to the left lower visual quadrant. Color scale is the same as in Fig. 2. L.H., left hemisphere. (B) x axis, task fitness; y
axis, FC (Fisher Z-transformed) between a right dorsal visual seed V3A–LO (green, Inset; same as inA) and left anterior insula (LaI; red) extracted from the FC–PC1
correlation map in A (Talairach coordinates, −38 +18 −07; 171 voxels). Each diamond represents an observer. (C) Conjunction map of FC–PC1 correlation maps
from eight visual seeds. Color scale is the same as in Fig. 2. (D) Conjunction map between activation map of orientation discrimination task (trained plus
untrained shape greater than fixation, Z-statistic >3, P < 0.05, Monte Carlo corrected;Methods) and FC–PC1 conjunction map thresholded at negative three of
eight (green). Overlapped voxels are in yellow. (E) Medial view of the voxel-wise FC–PC1 correlation map starting from a right ventral visual seed (V1–V2),
corresponding to the left upper visual quadrant. Color scale is the same as in A. R.H., right hemisphere. (F) x axis as in B; y axis is FC (Fisher Z-transformed)
between a right ventral visual seed V1–V2 (green, Inset) and a right ventral medial prefrontal cortex (RvmPFC; red) extracted from the FC–PC1 correlation map
in A (Talairach coordinates, +04 +38 −18; 120 voxels). Each diamond represents an observer. (G) Medial view of the same conjunction map in B, with the same
color scale. (H) Conjunction map between deactivation map of orientation discrimination task (trained plus untrained shape less than fixation, Z-statistic > 3,
P < 0.05, Monte Carlo corrected; Methods) and FC–PC1 conjunction map thresholded negative three of eight (green). Overlapped voxels are in yellow.
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variance and was correlated with initial performance, rate of learning, and
number of blocks to criterion.

FC–PC1 Correlation. Voxel-wise or ROI pair FC–PC1 correlations were com-
puted as the Pearson correlation coefficient r between FC measures and task
fitness (Results). FC was conventionally computed as the Pearson correlation
between the time series extracted from a predefined ROI (e.g., left ventral
visual cortex) and the rest of the brain (to obtain voxel-wise maps) or an-
other ROI (to obtain ROI–ROI FC; SI Methods provides detailed information).
Voxel-wise statistical significance in correlation maps was evaluated by first
expressing the result as equi-probable Z score maps, which were then cor-
rected for multiple comparisons. Significance thresholds for ROI pair FC were

computed by permutation simulations. Presently reported ROI pair results
are FDR corrected with a q-value lower than 0.05.
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Participants. Fourteen healthy, right-handed volunteers (seven
female; aged 20–30 y) with normal or corrected-to-normal vision
participated in the study, after providing written informed con-
sent approved by the institutional review board of the University
“G. d’Annunzio” of Chieti, Italy. All subjects were screened for
a history of psychiatric or neurological disorders, and were not
taking any medications.

Visual Stimuli. The visual stimuli were generated using in-house
software (LabScript) implemented in MATLAB (MathWorks).
They were projected on a NEC 75 F Multisync monitor using
a YASHI Pentium 4 computer during the behavioral training
sessions, and back-projected to a translucent screen by an LCD
video projector (830 G+; NEC), which was viewed through a
mirror attached to the head coil during functional MRI (fMRI).
The timing of stimulus presentation was synchronized to the
acquisition of the fMRI frames.
The stimulus pattern was an annulus (5° radius) formed by 12

letter Ts (size, 1.5° visual angle) equally spaced and displayed
randomly in four orientations (canonical, inverted 180°, and 90°
rotated to the left or right). The target shape was always an inverted
T, whereas Ts of different orientation were used as distracters.

Behavioral Training. During daily training sessions, participants
were instructed to attend to the left lower visual quadrant and
report the presence/absence of the target shape while maintaining
central fixation (Fig. 1). The position of the eyes was monitored
with an infrared eye tracker (ETL-400; iSCN). Each trial began
with a central fixation spot followed by the presentation of the
target shape for 2,000 ms, and then by the stimulus pattern for 150
ms. In the stimulus pattern, the target shape randomly appeared
in one of three possible locations in the left lower visual quadrant,
whereas the distracters, changing orientation randomly on each
trial, were displayed in the remaining 11 locations across the four
visual quadrants. Subjects indicated the presence/absence of the
target shape by pressing one of two response keys on a Cedrus
button box while maintaining fixation on the central spot. Par-
ticipants performed blocks of 45 trials, of which 36 (80%) con-
tained the target, and nine (20%) did not. In each daily session
subjects ran, on average, approximately 30 blocks of trials (range,
10–45 blocks). Training was discontinued when each observer
reached a criterion of greater than 80% accuracy in at least 10
consecutive blocks.

fMRI Procedure and Scanning. Before behavioral training, subjects
were scanned on a 1.5-T Siemens Vision scanner to obtain an-
atomical and functional scans. Anatomical images were acquired
with a sagittal magnetization-prepared rapid acquisition gradient
echo T1-weighted sequence (MPRAGE) with repetition time of
9.7 s, echo time of 4 ms, flip angle of 12°, time for inversion of
1,200 ms, and voxel size of 1 × 1 × 1.25 mm. Functional images
were acquired with a gradient-echo sequence (repetition time,
2.163 s; echo time, 50 ms; flip angle, 90°; slice thickness, 8 mm) in
the axial plane (matrix, 64 × 64; field of view, 240 mm; 3.75 ×
3.75 mm in-plane resolution). Sixteen slices were acquired for
whole-brain coverage.
The fMRI data were acquired at rest, and during visuotopic

localizer scans designed to identify regions in visual occipital
cortex responding preferentially to the stimulus pattern in each of
the four visual quadrants. During the resting-state scans, subjects
were instructed to fixate a small cross in a low luminance envi-

ronment and remain passive. Six scans of resting state, each in-
cluding 128 volumes, were acquired. During the localizer scans,
subjects were asked to maintain central fixation and quarter-field
stimuli were presented in a blocked design alternating with fix-
ation periods (Fig. 1C). Each scan consisted of 20 blocks: 16
stimulation blocks (four for each visual quadrant: left lower,
right lower, left upper, and right upper), in which an array of
three letter Ts was flashed at 6.67 Hz for 13 s, and four fixation
blocks that were randomly interspersed among the stimulation
blocks. Six runs of visuotopic localizer scans, each including 117
volumes, were obtained.
A second scanning session was performed after the perceptual

training was completed to define brain regions recruited by the
task. In a blocked design, subjects performed the orientation task
by using the familiar shape used for training (inverted letter T) or
a novel shape (a T rotated 90° to the left or right). In both
conditions, the target was always randomly presented at one of
the three locations of the stimulus array in the trained quadrant.
The two tasks were run in blocks of trials beginning with a cen-
tral cue (duration, 2.163 s) indicating the upcoming target (du-
ration, 2.163 s), with each block lasting for 12 s (six trials per
block). The target was present on 80% of the trials, as in the
behavioral session. Fixation blocks of 6, 10, or 12 s, with equal
probability, were randomly interspersed with the active task
blocks. Six scans, each including 113 volumes, were obtained,
equal to 18 blocks (or 108 trials) per condition.

Behavioral Analysis.Percent accuracy was computed for each block
of training as follows (1, 2):

½hits ð%Þ þ correct rejections ð%Þ� − false alarms ð%Þ=1
− false alarms ð%Þ [S1]

Individual raw learning curves were smoothed by using a five-
point moving average (MATLAB; MathWorks), and were fit with
a model fit using an empirical two-parameter expression:

a ¼ a0 þ slogðkÞ [S2]

where a is accuracy, k indexes block, a0 is initial accuracy on the
first block, and s is a scaling parameter numerically equal to the
initial slope, by using Curve Fitting Toolbox 2.0 (MATLAB;
MathWorks). This model provided the best fit of the psycho-
physical performance curves, compared with linear and sigmoi-
dal fits, expressed in terms of variance explained (r2): median r2

of 0.68, range of 0.29–0.93 (Fig. 1B and Fig. S1). In addition to a0
and s, the number blocks needed to achieve criterion (i.e., 80%)
performance, kc, was evaluated (Fig S2A shows individual
scores). These three measures were correlated: initial accuracy
and slope (r = −0.85; P < 0.001), initial accuracy and blocks to
criterion (r = −0.68; P < 0.01), and slope and blocks to criterion
(r = 0.27; P < 0.3; Fig. S2). After normalizing the behavioral pa-
rameters (mean = 0, SD = 1), we attempted to reduce the di-
mensionality by computing a principal component analysis (PCA).
To obtain individual quantitative indices of performance, a0, s,

and kc were entered into a PCA (Fig. S3). The first component
(i.e., PC1) explained 75% of the variance. The second compo-
nent accounted for 15% of the variance, but its eigenvalue was
less than 1 (scree plot in Fig. S3) and it was therefore not further
considered (3). Accordingly, PC1 was used to compute individual
measures of performance, which we here define as “task fitness”,
using the following expression:
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f ¼ ½a0 s kc� ·w [S3]

where w is the vector of factor weights (0.6619, −0.5655, and
−0.4920) for initial accuracy a0, slope s, and number of blocks to
criterion kc, respectively. The first component represents a pre-
dictor of our observers’ fitness or aptitude toward performing the
orientation discrimination task. Principal component scores for
PC1 from each subject were used as regressors for all of the
functional connectivity (FC) and behavior correlation analysis
(Fig. S3B).

fMRI Data Preprocessing. Functional data were realigned within
and across scanning runs to correct for head motion by using an
eight-parameter (rigid body plus in-plane stretch) cross-modal
registration. Differences in the acquisition time of each slice
within a frame were compensated for by sync interpolation. A
whole-brain normalization factor was applied to each run to
correct for changes in signal intensity between runs (mode of
1,000). For each subject, an atlas transformation (4) was com-
puted on the basis of an average of the first frame of each
functional run and MPRAGE structural images to the atlas
representative target by using a 12-parameter general affine
transformation. Functional data were interpolated to 3-mm cu-
bic voxels in atlas space. The atlas representative MPRAGE
target brain (711–2C) was produced by mutual coregistration (12
parameters affine transformations) of images obtained in 12
normal subjects (4). All preprocessing steps were performed by
using in-house software.

Visuotopic Localizer and Orientation Discrimination Task Data
Processing. The blood oxygenation level-dependent (BOLD)
time course at each voxel, for each subject, was subjected to a
general linear model with an assumed response function (Boy-
nton hemodynamic model) (5) by using in-house software.
Constant and linear terms over each BOLD run accounted for
baseline and linear drift. Separate task regressors coded for each
of the event types [five for the visuotopic localizer (fixation, left
lower quadrant, right lower quadrant, left upper quadrant, and
right upper quadrant); three for the orientation discrimination
task (fixation, trained shape, untrained shape)]. A “residuals”
dataset was created by summing the modeled responses (but not
the constant or linear drift) with the residuals unaccounted for by
the linear model. Therefore, this dataset contains the original
time series minus the constant and linear drift terms. Group
analyses were conducted using voxel-wise random-effect AN-
OVAs. Statistical images were Monte Carlo corrected for multi-
ple comparisons over the entire brain (P < 0.05) to obtain Z-score
maps. Contrast maps were computed by subtracting ANOVA
effects at each voxel to create Z-score images from a given GLM.
For the visuotopic localizer, voxels responding preferentially to
each visual quadrant were found by contrasting the Z-score image
for the desired visual quadrant with the average of the Z-score
images from the other quadrants.

Additional Preprocessing for Resting-State Data. In preparation for
the FCMRI analysis, data were passed through several additional
preprocessing steps (6): (i) spatial smoothing (6 mm full width at
half maximum Gaussian blur), (ii) temporal filtering retaining
frequencies in the 0.009–0.08 Hz band, and (iii) removal of the
following sources of spurious variance unlikely to reflect spatially
specific functional correlations through linear regression: (i) six
parameters obtained by rigid body correction of head motion,
(ii) the whole-brain signal averaged over a fixed region in atlas
space, (iii) signal from a ventricular region of interest (ROI), and
(iv) signal from a region centered in the white matter.

Seed Regions. A set of seed regions in visual cortex, and auditory
cortex was functionally defined from localizer and task contrast

maps by using an in-house clustering algorithm. Seeds were
initially defined as 15-mm spheres centered on peaks (threshold
between Z-score 3 and −3); peaks within 15 mm of each other
were consolidated into a single ROI. Stimulus-specific seeds in
visual cortex were defined on the basis of localizer contrast maps:
desired quadrant vs. average of all other quadrants. For each
quadrant, the two strongest responses were selected. Their lo-
cation was defined based on their overlap with the probabilistic
borders of retinotopic areas in the Population Average Land-
mark and Surface (PALS) atlas (7), similarly to our previous
study (8). In general, for each quadrant, we obtained a response
in early visual cortex (i.e., V1/V2) and one in intermediate visual
cortex (i.e., V3–VP/V4–V3A). Moreover, a set of control regions
in auditory cortex was defined from the task activation data by
using the contrast Trained plus Untrained shape vs. Fixation.
During a visual task, strong deactivations are typically observed
in auditory cortex (9). Accordingly, two primary and two sec-
ondary auditory regions were selected in each hemisphere for
the FC analysis. All the seeds are listed in Table S1.

Resting-State FC Over Whole Brain. In each participant, voxel-wise
resting state FC maps were computed for each seed (e.g., right
dorsal V1–V2) by extracting time course from a given seed and
then computing the correlation coefficient (Pearson r) between
that time course and the time course from all other brain voxels.
Correlation coefficients were converted to a normal distribution
by Fisher Z-transform.

FC-Behavior Correlation Over Whole Brain. For each of the eight
visual ROIs, we computed voxel-wise correlation maps between
behavior and FC, i.e., FC–PC1 correlation maps, by using in-
dividual factor scores of the first component (i.e., PC1) of the
behavioral PCA (Fig. S4). These maps were computed by cal-
culating at each voxel the correlation coefficient (Pearson cor-
relation coefficient r) between FC for a seed region (e.g., right
dorsal V1–V3) and the rest of the brain, and behavioral scores
over the group of subjects. Considering x equal to behavioral
score (e.g., factor score of PC1) and y equal to FC between
a visual seed region (e.g., right dorsal V1–V3) and a given voxel,
we used the following formula:

r ¼ 1
n− 1

Xn
i¼1

��
Xi − �X
σX

��
Yi − �Y
σY

��
[S4]

where n is the number of subjects (14); Xi, �X , and σX are the
score, sample mean, and sample SD for the behavior re-
spectively; and Yi, �Y , and σY are the score, sample mean, and
sample SD for the FC, respectively.
This computation generated a voxel-wise correlation map

indicating which voxels showed a significant association (positive
or negative correlation) between FC with a given visual seed
region (right dorsal V1–V3) and the behavioral score (Fig. S4
shows analysis flowchart). The r-score maps were transformed
first into t-score and then to Z-statistic maps. The final Z-sta-
tistic maps were corrected for Monte Carlo multiple compar-
isons (Z > 2, P < 0.05; Fig. S5). These maps are defined as FC–
PC1 correlation maps.
The consistency of the topography of the behaviorally signifi-

cant FC was quantified by a conjunction analysis of thresholded
FC–PC1 maps across seed regions. A positive value in a given
voxel indicates how many visual seeds show positive correlation
between behavioral score and its FC with that voxel. At the same
time, a negative value indicates how many seeds exhibit negative
correlations. Given that we used eight visual seeds (Fig. 1D), the
maximum value in the conjunction maps was ±8. The same
procedure was performed for the four control regions in the
auditory cortex.
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FC-Behavior vs. Task-Evoked Topography. The overlap of regions
showing positive FC–PC1 correlation with those responding dur-
ing the visuotopic localizer or the task was quantified by com-
puting the percentage of voxels overlapping between FC–PC1
correlation conjunction maps, and sum maps of task-evoked ac-
tivity. For the visuotopic condition, the four quadrant-related Z-
score (multiple comparisons corrected) maps were summed. The
sum map was thresholded at a Z of 3 and transformed to a binary
map (Fig. 2D). For the orientation task, Z-maps with positive or
negative modulation above a Z value threshold ±3 for the contrast
trained plus untrained vs. fixation were summed. Percentage of
voxel overlap between FC–PC1 correlation conjunction and sum
maps of task-evoked activity were calculated at different con-
junction thresholds (e.g., four of eight seeds, six of eight seeds).

FC–Behavior Correlation at the Regional Level. In addition to com-
puting the FC–behavior correlation over the whole brain, we also
conducted FC–PC1 correlation analyses at the regional level.
BOLD time series were extracted from visuotopic ROIs (Table
S1; Seed ROIs), and correlation matrix was created by com-
puting the pairwise temporal correlation (Pearson correlation
coefficient r) across all ROIs. This r-score matrix was then con-
verted by Fisher Z-transform into a normalized Z-score matrix
(Fig. 3A). Finally, the Z-score FC matrix was correlated across
subjects with the PC1 scores (Fig. 3B). A correction for multiple
comparisons was implemented by a random permutation test,
and thresholded at a false discovery rate of q < 0.05 for 1,000
permutations.
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Fig. S1. Individual learning curves and logarithmic fit. x axis, progressive number of blocks; y axis, accuracy (percentage of correct response corrected for false
alarms (Eq. S1). Dots indicate individual blocks and lines indicate individual logarithmic fit curves. Each color refers to a single observer.
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Fig. S2. Behavioral parameters. (A) x axis, numbers 1–14 are individual observers; y axis, normalized scores (mean = 0, SD = 1) for initial accuracy (black) and
slope (gray) of individual logarithmic functions, and number of blocks to criterion (light gray). (B–D) Scatter-plots display correlations between behavioral pa-
rameters: initial accuracy and slope (B), initial accuracy and number of blocks (C), and slope and number of blocks (D). Each diamond indicates a single observer.

Fig. S3. PCA on behavioral parameters. (A) Scree plot of the PCA on the three behavioral parameters (initial performance, slope, and number of blocks). x axis,
principal components; y axis, eigenvalues. (B) x axis, individual observers; y axis, principal component scores.

Fig. S4. Analysis flowchart displays individual steps for the computation of FC–PC1 correlation maps.
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Fig. S5. FC by task fitness (PC1) correlation maps in visual cortex. Voxel-wise FC–PC1 correlation maps projected onto a flattened representation of the
posterior occipital cortex using the PALS atlas (1). Each map (A–H) corresponds to FC to/from a separate stimulus region (black borders) independently defined
from the visuotopic localizer scans: Right dorsal V1–V3 (A), right dorsal V3A–LO (B), left dorsal V1 (C), left dorsal V2–V3 (D), right ventral V1–V2 (E), right
ventral VP–V4v (F), left ventral V1–VP (G), and left ventral VP–V8 (H). Color scale: yellow/orange indicates positive correlation (Z-statistic of Pearson r)
thresholded at Z > 2, P < 0.05, and Monte Carlo corrected. Blue color indicates negative correlation. Blue lines define population average retinotopic borders in
the PALS atlas (1). L.H., left hemisphere; R.H., right hemisphere.

Fig. S6. Predictive intrinsic FC and task activations. (A) Voxel-wise of the conjunction map of eight FC–PC1 correlation maps, one for each visual seed shown in
Fig. 1D (Table S1 shows coordinates). Color scale: yellow/red indicates overlap of positive correlations (range, 1–8); cyan/blue indicates overlap of negative
correlation. (B) Voxel-wise activation map for visual orientation task (trained plus untrained shape minus fixation conditions). Color scale: Z-statistic >3, P <
0.05, Monte Carlo corrected. Yellow/red, activation; cyan/blue, deactivation. (C) Conjunction map between FC–PC1 conjunction map (A), thresholded at
positive four of eight and at negative three of eight (green) and activation map of orientation discrimination task (B) (red). Overlapped voxels are in yellow.

1. Van Essen DC (2005) A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28:635–662.
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Fig. S7. Task fitness and FC: visual vs. auditory. (A) Average FC map obtained by averaging individual maps from our eight stimulus seed ROIs in visual cortex
(black borders; same as Fig. S5). Color scale: yellow/orange indicates voxels showing positive FC (Z-statistic of Pearson r, thresholded at Z > 3, P < 0.05, Monte
Carlo corrected). (B) Conjunction of eight voxel-wise FC–PC1 correlation maps, one for each visual seed (Table S1 includes coordinates). Yellow/red indicates
overlap of positive correlations (range, 1–8). (C) Average FC map obtained by averaging individual FC maps obtained from four auditory seed ROIs (green
borders). The ROIs in auditory cortex were obtained by selecting negative (i.e., deactivation) responses during performance of the visual orientation dis-
crimination task in Heschl gyrus and superior temporal gyrus corresponding to primary and secondary auditory cortices. The map is projected on the flattened
representation of the right (Right) and left (Left) temporal lobes by using the PALS atlas (1). Color scale is the same as in A. (D) Conjunction map of four FC–PC1
correlation maps, one for each auditory seed (Table S1 shows coordinates). Color scale is the same as in B. LHG, left Heschl gyrus; LSTG, left superior temporal
gyrus; RHG, right Heschl gyrus; RSTG, right superior temporal gyrus.

Table S1. Seed ROIs

Coordinates Regions Label Network Origin Voxels Z-score

+14 −92 +20 Right early dorsal visual cortex Right dorsal V1–V3 Visual Visuotopic 221 25.35
+28 −86 +11 Right intermediate dorsal visual cortex Right dorsal V3A–LO Visual Visuotopic 138 16.04
−13 −97 +14 Left early dorsal visual cortex Left dorsal V1 Visual Visuotopic 104 19.26
−10 −85 +1 Left intermediate dorsal visual cortex Left dorsal V2–V3 Visual Visuotopic 220 12.73
+9 −80 −6 Right early ventral visual cortex Right ventral V1–V2 Visual Visuotopic 201 28.94
+23 −75 −12 Right intermediate ventral visual cortex Right ventral VP–V4 Visual Visuotopic 249 17.70
−19 −78 −12 Left early ventral visual cortex Left ventral V1–VP Visual Visuotopic 214 23.05
−4 −83 −7 Left intermediate ventral visual cortex Left ventral VP–V8 Visual Visuotopic 163 18.65
+41 −26 +17 Right Heschl gyrus Right HG Auditory Task 282 −11.90
+63 −27 +14 Right superior temporal gyrus Right STG Auditory Task 54 −6.00
−45 −36 +2 Left Heschl gyrus Left HG Auditory Task 114 −8.50
−62 −35 +7 Left superior temporal gyrus Left STG Auditory Task 117 −8.60

List of ROIs. Coordinates, [x, y, z] according to Talairach atlas (1) used for FC analysis. Origin, contrasts from which ROIs were
selected; Visuotopic, stimulus localizer; Task, subtraction between task Trained + Untrained vs. Fixation.

1. Talairach J, Tournoux P (1998) Co-Planar Stereotaxic Atlas of the Human Brain (Thieme Medical Publishers, New York).

1. Van Essen DC (2005) A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28:635–662.
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Table S2. Regions with behaviorally significant FC from visual areas

Region Overlap Seeds Correlation

R VP 8/8 All Positive
R VP 7/8 All except R ventral V1–V2 Positive
R V2v 7/8 All except R ventral V1–V2 Positive
L V3A 7/8 All except L dorsal V1 Positive
L V7 7/8 All except L dorsal V1 Positive
R V2d 6/8 All except R dorsal V1–V3,L dorsal V1 Positive
R V3-V3A 6/8 All except L dorsal V1, L dorsal V2–V3 Positive
R V1v 6/8 All except R dorsal V3A–LO, L dorsal V1 Positive
R V2v 6/8 All except R dorsal V3A–LO, L dorsal V1 Positive
R V4v 6/8 All except L dorsal V1, R ventral V1–V2 Positive
L V1d 6/8 All except R dorsal V3A–LO, R ventral VP–V4 Positive
L V3 6/8 All except L dorsal V1, L dorsal V2–V3 Positive
L V3A 6/8 All except L dorsal V1, L dorsal V2–V3 Positive
L V4v 6/8 All except R ventral V1–V2, L ventral VP-V8 Positive
R V1d 5/8 L V2–V3d, R V1–V2v, R VP–V4v, L V1–VPv, L VP–V8v Positive
R V2d 5/8 R V3A–LOd, R V1–V2v, R VP–V4v, L V1–VPv, L VP–V8v Positive
R V3 5/8 R V3A–LOd, R V1–V2v, R VP–V4v, L V1–VPv, L VP–V8v Positive
R V3A 5/8 R V3A–LOd, R V1–V2v, R VP–V4v, L V1–VPv, L VP–V8v Positive
R V1v 5/8 L V2–V3d, R V1–V2v, R VP–V4v, L V1–VPv, L VP–V8v Positive
R VP 5/8 R V1–V3d, R V3A–LOd, R V1–V2v, L V1d, L V2–V3d Positive
R V4v 5/8 R V1–V2v, R VP–V4v, L V1–VPv, L VP–V8v, L V1d Positive
L V1d 5/8 R V1–V3d, R V1–V2v, L V2–V3d, R V1–V2v, L V1d Positive
L V3A 5/8 R V1–V3d, R V3A–LOd, R V1–V2v, R VP–V4v, L V1d Positive
L V7 5/8 R V1–V3d, R V3A–LOd, R V1–V2v, R VP–V4v, L V1d Positive
L VP 5/8 R V1–V3d, R V3A–LOd, R V1–V2v, L V2–V3d, L V1d Positive
L V4v 5/8 R V1–V3d, R V3A–LOd, R V1–V2v, L VP–V8v, L V1d Positive
R STS 5/8 R V1–V3d, R V3A–LOd, R V1–V2v, L VP–V8v, L V1d Negative
R MFG 5/8 R V1–V3d, R V3A–LOd, R V1–V2v, L VP–V8v, L V1d Negative
R mvPFC 4/8 L V2–V3d, R V1–V2v, L V1–VPv, L VP–V8v Negative
R mdPFC 4/8 L V2–V3d, R V1–V2v, L V1–VPv, L VP–V8v Negative
L mvPFC 4/8 R V1–V2v, R VP–V4v, L V1–VPv, L VP–V8v Negative
L aI 4/8 R V1–V3d, R V3A–LOd, R VP–V4v, L V1d Negative
R AG 3/8 R V1–V3d, R V3A–LOd, L V1d Negative
L mdPFC 3/8 R V1–V3d, R V3A–LOd, L V1d Negative
L AG 3/8 R V1–V3d, R V3A–LOd, L V2-V3d Negative

Regions, foci with significant FC-PC1 correlation; coordinates, x, y, z; overlap, number of visual ROIs with
significant FC to this region (maximum n = 8 ROIs); correlation, direction (positive/negative) of FC-PC1 correla-
tions. L, left; R, right; STS, superior temporal sulcus; MFG, middle frontal gyrus; mvPFC, medio-ventral prefrontal
cortex; mdPFC, medio-dorsal prefrontal cortex; aI, anterior insula; AG, angular gyrus.
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